Rabu, 27 April 2016

TUGAS 04 SISTEM BERKAS ORGANISASI BERKAS PADA INDEXED SEQUENTIAL

TUGAS 04 SISTEM BERKAS
ORGANISASI BERKAS PADA INDEXED SEQUENTIAL




DISUSUN OLEH

                                                                           Nama   : Muanar Gadafi Barek
                                                   Nim      : 121051027

Jurusan Teknik Informatika
Fakultas Teknologi Industri
Institut Sains dan Teknologi AKPRIND
 Yogyakarta
2016



BAB I

PENDAHULUAN


1.1.Latar Belakang


File/berkas adalah sekumpulan informasi yang saling berkaitan dan didefenisikan oleh pembuatnya. Umumnya berkas adalah sekumpulan bit, byte, record di mana artinya didefenisikan oleh pembuat dan pemakainya. File data dapat berbentuk numeric, alfabeth ataupun alfanumeric. File dapat berbentuk bebas seperti file teks atau terstruktur. Suatu file mempunyai nama dan diacu berdasarkan nama tersebut. Juga mempunyai komponen lain seperti tipe, waktu pembuatan, nama dan nomor account dari pembuatnya, besar ukuran file. Kita dapat menulis informasi, mengubah informasi, menambah dan menghapus informasi dalam file.


Sistem berkas adalah suatu sistem untuk mengetahui bagaimana cara menyimpan data dari file tertentu dan organisasi file yang digunakan. Sistem berkas menyediakan pendukung yang memungkinkan programmer mengakses file tanpa menyangkut perincian karakteristik penyimpanan dan peralatan pewaktu. Sistem berkas mengubah pernyataan akses file menjadi instruksi/output level rendah. Atau dengan kata lain Sistem berkas adalah cara untuk mengambil informasi dari suatu file.


Pengertian Organisasi berkas adalah Suatu teknik/cara yang digunakan untuk menyatakan/menggambarkan dan menyimpan record-record dalam sebuah berkas.


Ada 4 teknik dasar organisasi berkas, yaitu: (1). Sequential File (2). Relative File (3). Index Sequential File (4). Multi-Key File
Salah satu kegiatan dalam materi system berkas adalah bagaimana mengorganisir sebuah record yang ada dalam berkas. Organisasi berkas indeks sequential adalah Berkas/file yang  disusun sedemikian rupa sehingga dapat diakses secara sequential maupun secara direct (langsung) atau kombinasi keduanya, direct dan sequential . Organisasi berkas ini mempunyai semua keunggulan dari sequential file.  Tetapi kemampuan aksesnya jauh lebih baik 
1.1.Rumusan Masalah
Adapun rumusan masalah dalam makalah iniyaitu sebagai berikut:
1.      Pengertian organisasi berkas indexed sequential?
2.      Contoh dari  indexed sequential?
3.      Implementasi organisasi berkas indexs sequential?
4.       Keuntungan dan kerugian penggunaan magnetic disk?
1.2.Maksud dan Tujuan
Secara umum tujuan penyusunan makalah ini bertujuan untuk :
1.      Sebagai salah satu syarat untuk memenuhi tugas mata kuliah Sistem Berkas
2.      Agar dapat memahami menegenai tentang  Organisasi Berkas Indexed Sequential


BAB II
PEMBAHASAN
2.1. Pengertian Organisasi Berkas Indexed Sequential
Organisasi berkas indeks sequential adalah berkas / file yang disusun sedemikian rupa sehingga dapat diakses secara sequential maupun secara direct (langsung) atau kombinasi keduanya, direct dan sequential. Penyimpanan ataupun penulisan character demi character yang ada didalam external memory, harus diatur sedemikian rupa sehingga komputer bisa dengan mudah menemukan kembali data-data yang tersimpan didalamnya. Aturan inilah yang kemudian dikenal sebagai organisasi file. Dalam hal ini, dikenal ada beberapa metoda, yaitu: Sequential File, Random File dan Index Sequential File.
2.1.1.      Sequential File
Sequential file merupakan suatu cara ataupun suatu metode penyimpanan dan pembacaan data yang dilakukan secara berurutan. Dalam hal ini, data yang ada akan disimpan sesuai dengan urutan masuknya. Data pertama dengan nomor berapapun, akan disimpan ditempat pertama, demikian pula dengan data berikutnya yang juga akan disimpan ditempat berikutnya. Dalam melakukan pembacaan data, juga akan dilakukan secara berurutan, artinya, pembacaan akan dimulai dari data paling awal dan dilanjutkan dengan data berikutnya sehingga data yang dimaksud bisa diketemukan.
2.1.2.      Random File 
Random file merupakan suatu cara ataupun suatu metode penyimpanan dan pembacaan data yang dilakukan secara random atau langsung. Dengan demikian, random file juga disebut sebagai Direct Access File (Bisa dibaca secara langsung). Dalam hal ini, tempat penyimpanan data sudah diatur sedemikian rupa, sehingga setiap data akan tersimpan didalam tempat-tempat yang telah ditentukan sesuai dengan nomor data yang dimiliki-nya.
2.1.3.      Index Sequential File 
Index Sequential File merupakan perpaduan terbaik dari teknik sequential dan random file. Teknik penyimpanan yang dilakukan, menggunakan suatu index yang isinya berupa bagian dari data yang sudah tersortir. Index ini diakhiri denga adanya suatu pointer (penunjuk) yang bisa menunjukkan secara jelas posisi data yang selengkapnya. Index yang ada juga merupakan record-key (kunci record), sehingga kalau record key ini dipanggil, maka seluruh data juga akan ikut terpanggil. Untuk penyimpanan dan pembacaan data secara sequential, dapat dilihat rekaman lagu yang tersimpan pada kaset. Untuk mendengarkan lagu kelima, kita harus melalui lagu kesatu, dua, tiga dan empat terlebih dahulu. Pembacaan seperti inilah yang disebut sebagai sequential atau berurutan. Apabila lagu-lagu yang ada kemudian disimpan didalam compack-disk, maka untuk mendengar kan lagu yang ke-lima bisa langsung dilakukan (dibaca secara random). Disamping itu, dengan compack-disk juga bisa dilakukan pembacaan secara berurutan atau sequential. Compack-disk menyimpan lagu secara random. Untuk penyimpanan data dengan menggunakan teknik index sequential ini, kita bisa mengibaratkan dengan melihat daftar isi pada sebuah buku. Pada bagian disebelah kiri disebut sebagai index data yang berisi bagian dari data yang ada. Index data kemudian diakhiri dengan pointer yang menunjukkan posisi keseluruhan isi data. Sebuah data yang terdiri Nomor, Nama, NL1, Nl2, dan NL3 bisa disimpan dengan menggunakan Nomor sebagai Index. Apabila data tersebut dicetak, maka akan dihasilkan suatu data yang berurutan berdasar Nomor. Nomor yang ada akan tersusun dengan urutan dari kecil keurutan yang lebih besar. Dari data yang ada, juga bisa dibuat Nama sebagai Index. Apabila data tersebut dicetak, maka akan dihasilkan suatu data yang berurutan berdasar Nama. Nama yang ada akan tersusun dengan urutan dari kecil keurutan yang lebih besar. Pulung yang memiliki abjad terkecil, akan menempati posisi pertama dan Rino pada posisi terakhir. Gambar yang ada menunjukkan bagaimana record data nilai disimpan didalam media disk ataupun disket dengan menggunakan teknik index sequential. Index data akan dibaca pertama kali oleh computer dan dikarenakan didalam index data juga terdapat address maka data yang dicari bisa segera diketemukan. Sesuai dengan sifat media yang dimilikinya, maka pada sebuah pita magnetic tape, hanya bisa menyimpan data secara sequential. Dengan demikian, cara pembacaan yang dilakukan juga hanya secara sequential, yaitu berurutan satu persatu sampai nomor record yang dikehendaki diketemukan. Dengan menggunakan Direct Access Methode (metode pembacaan/penulisan secara langsung), maka, record yang tersimpan didalam sebuah disket, Hard-disk, CD ROM ataupun Laser-Disk dapat di-access secara langsung dengan tanpa harus membaca seluruh data yang dimilikinya. Access dengan menggunakan methoda Index-sequential juga dapat dilakukan oleh media ini. Dengan melakukan access pertama kali pada key-field yang ada, maka akan diketemukan record yang dituju. Data yang sudah terekam dalam methoda index-sequential juga dapat dilakukan pembacaan secara sequential. Key-field akan dibaca pertama kali secara sequential, dan untuk selanjutnya record yang dituju akan diketemukan.
2.2.Contoh dari indexed sequential
2.2.1.      Struktur Pohon
Sebuah pohon (tree) adalah struktur dari sekumpulan elemen, dengan salah satu elemennya merupakan akarnya atau root dan sisanya yang lain merupakan bagian-bagian pohon yang terorganisasi dalam susunan berhirarki dengan root sebagai puncaknya.
Contoh umum dimana struktur pohon sering ditemukan adalah pada penyusunan silsilah keluarga, hirarki suatu organisasi, daftar isi suatu buku dan lain sebagainya.
Contoh :


Gambar II.1
Secara rekursif suatu struktur pohon dapat didefinisikan sebagai berikut :
Ø  Sebuah simpul tunggal adalah sebuah pohon.
Ø  Bila terdapat simpul n, dan beberapa sub pohon T1, T2, ..., Tk, yang tidak saling berhubungan, yang masing-masing akarnya adalah n1, n2, ..., nk, dari simpul / sub pohon ini dapat dibuat sebuah pohon baru dengan n sebagai akar dari simpul-simpul n1, n2, ..., nk.



Gambar II.2



2.2.2.      Pohon Biner
Salah satu tipe pohon yang paling banyak dipelajari adalah pohon biner. Pohon Biner adalah pohon yang setiap simpulnya memiliki paling banyak dua buah cabang / anak.




Gambar II.3
Adapun jenis akses yang diperbolehkan, yaitu :
Ø  Akses Sekuensial
Ø  Akses Direct
Sedangkan jenis prosesnya adalah :
Ø  Batch
Ø  Interactive
Struktur Berkas Indeks sekuensial
Ø  Indeks ® Binary Search Tree
Data    ® Sekuensial
Lihat gambar berikut ini :


 Gambar II.4

Pada gambar tersebut memperlihatkan struktur berkas indeks sequential dengan sebuah indeks berikut pointer yang menuju ke berkas data sequential. Pada contoh gambar tersebut, indeksnya disusun berdasarkan binary search tree. Indeksnya digunakan untuk melayani sebuah permintaan untuk mengakses sebuah record tertentu, sedangkan berkas data sequential digunakan untuk mendukung akses sequential terhadap seluruh kumpulan record-record.

2.3.Implementasi organisasi berkas indexed sequential
Ada 2 pendekatan dasar untuk mengimplementasikan konsep dari organisasi berkas indeks sequential :
Ø  Blok Indeks dan Data (Dinamik)
Ø  Prime dan Overflow Data Area (Statik)
Kedua pendekatan tersebut menggunakan sebuah bagian indeks dan sebuah bagian data, dimana masing-masing menempati berkas yang terpisah.
Alasannya :
Karena mereka diimplementasikan pada organisasi internal yang berbeda. Masing-masing berkas tersebut harus menempati pada alat penyimpan yang bersifat Direct Access Storage Device (DASD).
2.3.1.      Blok Indeks Dan Data (Dinamik) 
Pada pendekatan ini berkas indeks dan berkas data diorganisasikan dalam blok. Berkas indeks mempunyai struktur tree, sedangkan berkas data mempunyai struktur sequential dengan ruang bebas yang didistribusikan antar populasi record.
 Pada gambar tersebut ada N blok data dan 3 tingkat dari indeks. Setiap entry pada indeks mempunyai bentuk (nilai key terendah, pointer), dimana pointer menunjuk pada blok yang lain, dengan nilai key-nya sebagai nilai key terendah. Setiap tingkat dari blok indeks menunjuk seluruh blok, kecuali blok indeks pada tingkat terendah yang menunjuk ke blok data.
Jika sebuah permintaan untuk mengakses record tertentu, misal kita ingin mengakses dengan nilai key BAT, indeks dengan tingkat tertinggi (dalam hal ini blok indeks 3-1) yang pertama yang akan dicari pada contoh ini, pointer dari AARDVARK menunjuk blok indeks 2-1. Pointer yang ditunjuk pada kotak tersebut adalah pointer yang berisikan AARDVARK, yang akan menunjuk ke blok indeks 1-1. POinter berikutnya yang akan ditunjuk adalah pointer yang berisi BABOON, yang selanjutnya akan menunjuk blok data 2. Blok data ini akan mencari untuk record dengan key tujuan, yaitu BAT, dimana pada blok ini record tersebut ditemukan.
Permintaan untuk akses data dalam urutan sequential dilayani dengan mengakses blok data dalam urutan sequential. Sebagai catatan blok data merupakan consecutive secara logik dan bukan consecutive secara fisik. Dalam hal ini, blok data harus dihubungkan secara bersama dalam urutan secara logik, seperti terlihat pada gambar.
Misal :
Setiap blok data mempunyai ruang yang cukup untuk menampung 5 record dan setiap blok indeks mempunyai ruang yang cukup untuk menyimpan 4 pasang (nilai key, pointer).
Parameter ini biasanya sudah dilengkapi dengan rutin dukungan sistem manajemen data, pada saat berkas binatang ini dibentuk.
Jika kita menginginkan penyisipan maupun penghapusan terhadap isi berkas, maka blok indeks dan blok data akan dibuat dengan sejumlah ruang bebas, yang biasanya disebut sebagai padding dan pada gambar ditunjukkan sebagai irisan.
Permintaan :  INSERT APE
                        INSERT AIREDALE
Hanya blok data 1 yang digunakan dan hasilnya ditunjukkan pada gambar di bawah ini :







Gambar II.5


Entry pada blok harus diletakkan berdasarkan urutan sequential ascending.
Permintaan :
                                INSERT ARMADILLO
Pencarian dari struktur indeks menyatakan bahwa ARMADILLO seharusnya menempati blok data 1, tetapi blok tersebut sudah penuh.
Untuk mengatasi keadaan tersebut, blok data 1 dipecah dengan memodifikasi blok indeks 1-1.






Gambar II.6

Separuh dari isi blok data, tetap menempati blok tersebut dan separuhnya lagi dipindahkan ke blok yang baru dibuat, yaitu blok data 1A.
Hasilnya ditunjukkan pada gambar di bawah ini :
Gambar II.7
permintaan :
                                INSERT CAT
                                INSERT BEAR
                                INSERT BOBCAT
Akan mengisi blok data 2, tetapi blok data tersebut harus dipecah menjadi blok data 2 dan 2A
Blok indeks 1-1 sudah penuh dan tidak dapat memuat pointer pada blok data 2A, sehingga inipun harus dipecah, dengan cara mengubah penafsiran indeks pada tingkat 2.
Jika blok indeks pada tingkat paling tinggi (dalam hal ini indeks tingkat 3) sudah penuh, maka harus dipecah, sehingga sebuah indeks tingkat yang baru akan ditambahkan pada indeks tree.
Maka seluruh pencarian langsung memerlukan pengaksesan empat blok indeks dan sebuah blok data.


Gambar II.8

2.3.2.      Prime dan Overflow Data Area 
Pendekatan lain untuk mengimplementasikan berkas indeks sequential adalah berdasarkan struktur indeks dimana struktur indeks ini lebih ditekankan pada karakteristik fisik dari penyimpanan, dibandingkan dengan distribusi secara logik dari nilai key.
Indeksnya ada beberapa tingkat, misalnya tingkat cylinder indeks dan tingkat track indeks. Berkas datanya secara umum diimplementasikan sebagai 2 berkas, yaitu prime area dan overflow area.
Misalnya setiap cylinder dari alat penyimpanan mempunyai 4 track. Pada berkas binatang ada 6 cylinder yang dialokasikan pada prime data area. Track pertama (nomor 0) dari setiap cylinder berisi sebuah indeks pada record key dalam cylinder tersebut.
Entry pada indeks ini adalah dalam bentuk :
                                nilai key terendah, nomor track




Gambar II.9
Dalam sebuah track data, tracknya disimpan secara urut berdasarkan nilai key.
Tingkat pertama dari indeks dalam berkas indeks dinamakan master indeks.
Entry pada indeks ini adalah dalam bentuk :
                                nilai key tertinggi, pointer
Tingkat kedua dari indeks dinamakan cylinder indeks.
Indeks ini berisi pointer pada berkas prime data dan entry-nya dalam bentuk :
                                nilai key tertinggi, nomor cylinder

Jika sebuah permintaan untuk mengakses record tertentu, misal kita akan mengakses dengan nilai key BAT, pertama akan dicari pada master indeks. Karena BAT ada di depan LYNX, maka pointer dari LYNX akan menunjuk ke cylinder index. Karena BAT ada di depan ELEPHANT, maka pointer dari ELEPHANT akan menunjuk ke track 0 dari cylinder 1. Karena BAT ada di belakang BABOON dan di depan COW, maka pointer dari BABOON akan menunjuk ke track 2, yang mencari secara sequential sampai BAT ditemukan.
Permintaan untuk mengakses data secara sequential akan dilayani dengan mengakses cylinder dan track dari berkas data prime secara urut.
Misal setiap track dari berkas prime data mempunyai ruang yang cukup untuk menampung 5 record (jika penyisipan dan penghapusan terhadap berkas dilakukan, maka akan dibentuk padding).
Permintaan :
                                INSERT APE
INSERT AIREDALE                            
Akan mudah dilayani. Hanya track data 1 dari cylinder 1 yang akan digunakan dan hasilnya ditunjukkan pada gambar di bawah ini :
  


Gambar II.10
Permintaan :
                                INSERT ARMADILLO
Agak sulit ditangani. Pencarian struktur indeks menyatakan bahwa ARMADILLO seharusnya menempati track 1 dari cylinder 1, tetapi track tersebut sudah penuh.
Untuk mengatasi keadaan tersebut diperlukan overflow data area. Overflow data area ini merupakan berkas yang terpisah dari prime data area, tetapi overflow area ini ditunjukkan oleh entry prime data area.
Hasilnya ditunjukkan pada gambar di bawah ini :




Gambar II.11

Karena ARMADILLO seharusnya berada setelah kelima entry pada track 1 dari cylinder 1, tetapi karena track ini sudah penuh, maka ARMADILLO dipindahkan ke overflow data area. Indeks track dari cylinder 1 harus dimodifikasi untuk memperlihatkan bahwa ada sebuah record pada overflow area yang secara logik seharusnya menempati pada akhir dari track 1, sehingga penambahan dari entry itu adalah :
             <ARMADILLO,ovfl-ptr>
Dengan ovfl-ptr adalah :
                                <cylinder, track, record>
Permintaan :
                                INSERT CAT
                                INSERT BEAR
INSERT BOBCAT
Akan mengisi track 2 dari cylinder 1 pada prime data area, tetapi pengisian tersebut mengakibatkan penggunaan overflow area. Perhatikan CAT dipindahkan ke overflow area, karena entry pada prime track tidak hanya harus dalam urutan, tetapi juga entry tersebut harus mendahului suatu entry overflow dari track tersebut.

Hasilnya ditunjukkan pada gambar di bawah ini :


Gambar II.12

Permintaan :
                                INSERT ANT
Hasilnya ditunjukkan pada gambar di bawah ini :


 
Gambar II.13

2.4.Keuntungan Dan Kerugian Penggunaan Magnetic Disk
  • ·         Keuntungan Index Sequential File :
Sangat cocok untuk digunakan menyimpan batch data ataupun individual data. Dibanding Sequential file, pemanggilan data menjadi lebih cepat.
  • ·         Kerugian Index Sequential File :
Access (pemanggilan) data tidak bisa disamakan dengan random (direct access file). Memerlukan adanya ruangan extra didalam memory untuk menyimpan index data. Memerlukan adanya hardware dan software yang lebih kompleks.
·         Secara rekursif suatu struktur pohon dapat didefinisikan sebagai berikut :
-          Sebuah simpul tunggal adalah sebuah pohon.
-          Bila terdapat simpul n, dan beberapa sub pohon T1, T2, …, Tk, yang tidak saling berhubungan, yang masing-masing akarnya adalah n1, n2, …, nk, dari simpul / sub pohon ini dapat dibuat sebuah pohon baru dengan n sebagai akar dari simpul-simpul n1, n2,.nk.


BAB III PENUTUP
3.1. Kesimpulan
Organisasi berkas indeks sequential adalah berkas / file yang disusun sedemikian rupa sehingga dapat diakses secara sequential maupun secara direct (langsung) atau kombinasi keduanya, direct dan sequential. Penyimpanan ataupun penulisan character demi character yang ada didalam external memory, harus diatur sedemikian rupa sehingga komputer bisa dengan mudah menemukan kembali data-data yang tersimpan didalamnya. Aturan inilah yang kemudian dikenal sebagai organisasi file. Dalam hal ini, dikenal ada beberapa metoda, yaitu: Sequential File, Random File dan Index Sequential File.
3.2.Saran
Agar kita dapat menggunakan komputer dengan nyaman dan sistem penyimpanan file dengan sistematika yang seragam. Maka media penyimpanan logis yang tepat yaitu dengan menggunakan Sistem Berkas.
DAFTAR PUSTAKA
[1] https://riantyfeliz.wordpress.com/about/ diakses pada tanggal 25 April 2016